Learning and Reasoning for Robot Sequential Decision Making under Uncertainty
نویسندگان
چکیده
منابع مشابه
Collective Multiagent Sequential Decision Making Under Uncertainty
Multiagent sequential decision making has seen rapid progress with formal models such as decentralized MDPs and POMDPs. However, scalability to large multiagent systems and applicability to real world problems remain limited. To address these challenges, we study multiagent planning problems where the collective behavior of a population of agents affects the joint-reward and environment dynamic...
متن کاملPOMDPs.jl: A Framework for Sequential Decision Making under Uncertainty
POMDPs.jl is an open-source framework for solving Markov decision processes (MDPs) and partially observable MDPs (POMDPs). POMDPs.jl allows users to specify sequential decision making problems with minimal effort without sacrificing the expressive nature of POMDPs, making this framework viable for both educational and research purposes. It is written in the Julia language to allow flexible prot...
متن کاملPredictive Representations For Sequential Decision Making Under Uncertainty
The problem of making decisions is ubiquitous in life. This problem becomes even more complex when the decisions should be made sequentially. In fact, the execution of an action at a given time leads to a change in the environment of the problem, and this change cannot be predicted with certainty. The aim of a decision-making process is to optimally select actions in an uncertain environment. T...
متن کاملEfficient Methods for Near-Optimal Sequential Decision Making under Uncertainty
This chapter discusses decision making under uncertainty. More specifically, it offers an overview of efficient Bayesian and distribution-free algorithms for making near-optimal sequential decisions under uncertainty about the environment. Due to the uncertainty, such algorithms must not only learn from their interaction with the environment but also perform as well as possible while learning i...
متن کاملNecessity-Based Choquet Integrals for Sequential Decision Making under Uncertainty
Possibilistic decision theory is a natural one to consider when information about uncertainty cannot be quantified in probabilistic way. Different qualitative criteria based on possibility theory have been proposed, the definition of which requires a finite ordinal, non compensatory, scale for evaluating both utility and plausibility. In presence of heterogeneous information, i.e. when the know...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i03.5659